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Abstract—Robots must learn how to behave in accordance
with human desires and values. While today’s robot learning
algorithms increasingly enable people to teach robots via diverse
forms of feedback (e.g., demonstration, language, etc.), they place
the burden of responsibility on the human to perfectly understand
what the robot doesn’t know and provide the “right” data.
Instead, I contend that robots should be proactive participants—
they should bear some of the burden of knowing when they
don’t know and should ask for targeted help. I tackle this
problem by extending foundational uncertainty quantification
techniques to the HRI setting, enabling robots to rigorously
“know when they don’t know” even when relying on black-
box policies. With these uncertainty quantification algorithms,
I enable robots to ask for strategic help, like additional action
labels during interactive imitation learning. My future work is
focused on how robots should ask for help: developing algorithms
for user-aware, fluent robot queries for online human feedback.
I envision robots that explain what they are uncertain about in
natural language, but also understand which feedback modalities
(e.g. verbal clarification versus actions) might best resolve its
uncertainty and are thus appropriate to ask for.

Index Terms—learning from human feedback, uncertainty
quantification, preference learning

I. INTRODUCTION

One outstanding challenge in developing interactive au-
tonomous systems is ensuring that robots operate in accor-
dance with user intentions: assisting and interacting with peo-
ple in the ways users prefer [1]–[3]. Ultimately, the evaluator
of any interactive robot is an end-user: a tidy-bot [4] should
rearrange your belongings the way you like and an AI assistant
should sound like you when helping your write e-mails [5],
[6]. However, today’s robots don’t act according to human
preferences “out of the box” [7]–[9]. Thus, human oversight
remains crucial during a robot’s life-cycle. For example, robots
are aligned with end-user by explicitly getting their feedback,
whether it be preferences [10]–[12], demonstrations [13],
corrections [14], language [15], or implicitly communicative
behaviors [16]–[18]. Even after alignment, robots are super-
vised by operators, such as safety drivers monitor autonomous
vehicles [19]–[21] and everyday people who constantly check
if LLM outputs are reliable enough to use in their emails [22]–
[24]. In other words, humans bear the burden of deciphering
what robot’s know, what they don’t know, and preventing their
failures with targeted data [25], [26].

Instead, I believe that robots should know when they
don’t know and ask for targeted help, shouldering some
of the burden of preempting potential errors and helping
the user provide actionable feedback. To accomplish this,
advances in uncertainty quantification is a crucial first step.
Robots must first know when they are uncertain. While
Bayesian approaches [27]–[30] afford uncertainty quantifica-
tion via posterior entropy, leveraged as well in my prior work
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Fig. 1. The robot seeks to align its learned policy, πr , which may include
modeling of objective θ. My research aims to facilitate proactive questions
(red) between robot and human, enabling the robot to engage in a collaborative
alignment process, situated in real (A,B) and simulated domains (C).

[16]–[18], [31], [32], an open challenge is how to quantify
robot decision uncertainty in the presence of the end-to-end
“black box” policies underlying imitation and reinforcement
learning. To tackle this, I draw from statistical uncertainty
quantification techniques, and contributed a model-agnostic
method for robots to measure policy-level uncertainty in their
predicted actions [33], even when human feedback is observed
intermittently [34], providing the robot a self-assessment of
uncertainty, calibrated to human feedback received online.
Equipped with uncertainty estimates, the second step is for
robots to use their uncertainty to guide when to ask for help.
I developed an interactive imitation learning approach wherein
the robot uses its calibrated uncertainty as a reliable measure
of deployment-time uncertainty to actively query for more
expert feedback [34], allowing the robot to become proactive
in seeking intervention via expert control before erroneous
actions are performed and quickly adapt its behavior.

My remaining work will focus on the question of how to
interact for help: designing user-friendly methods for robots
to communicate uncertainty [32], [35] and create understand-
able, multimodal queries for feedback. The ultimate goal of
my thesis is to enable robots to be proactive participants in the
alignment process: assessing uncertainty and seeking continual
feedback even during online execution, while also being
cognizant of the user’s capacity for feedback and interaction
preferences. I envision robots that quantify and communicate
their uncertainty with in-the-loop users, but also ask questions
via different feedback modalities (verbal clarification versus
action control) that suit different sources of uncertainty.

II. QUANTIFYING UNCERTAINTY AND ASKING FOR HELP

My research is focused on how robot learners can ask
for help when they are uncertain. This is motivated by my
early works in which I observed how uncertainty plays a key
role in collaborative robot decision-making. My early work



showed robots can approach collaboration (in a simulated
collaborative cooking task Fig 1C) through uncertainty-aware
decisions [16] via a Mixture-of-Experts policy, weighting
actions of multiple reward-specific policies by the likelihood
of its reward, where Bayesian posterior entropy affords a
measure of uncertainty over rewards. Next, I [17] showed
planning ahead using an optimistic information gain objective
helps the robot refrain from hastily performing actions that
restrict future choices of the human, allowing the robot to more
effectively resolve uncertainty in its beliefs. However, these
methods were grounded in low-dimensional robot policies, and
highlights the need for effective high-dimensional uncertainty
quantification techniques to guide interactive decisions.

Extending Distribution-free Uncertainty Quantification
to HRI. To ensure that its behaviors are aligned with user
desires, the robot’s uncertainty lies in whether its policy is pro-
ducing desired behaviors [36]. Although methods like ensem-
bles [37], [38] quantify uncertainty stemming from the training
data, the robot’s uncertainty estimate can become quickly
uncalibrated as it encounters distribution shift or changing user
intentions during execution. Instead, I contend that the human
feedback requested and received during deployment time is a
valuable uncertainty quantification (UQ) signal that should be
leveraged to update the robot’s uncertainty estimate online. If
properly accounted for, the updated uncertainty estimate will
influence when the robot asks for more help, enabling it to
targetedly query the human to improve policy performance.

I introduce two methods for adaptive uncertainty quantifi-
cation over robot policies: given intermittent human feedback
(IQT [34]) and constant human feedback (ACQR [33]). My
approach is grounded in online conformal prediction [39]
which is a distribution-free, model-agnostic way to represent
uncertainty (with statistical guarantees) via prediction intervals
constructed on the output of the robot’s policy. Based on
human feedback via action labels, IQT and ACQR grow and
shrink uncertainty intervals over time as the user’s intention
is poorly- or well-predicted by the robot’s policy (Fig 1 A).

ACQR provides a critical validation step for safe deploy-
ment of learned policies for assistive teleoperation [40], [41],
where data-driven methods [42] learn a mapping from low-
DoF human inputs to high-DoF robot actions. Given the
learned assistive policy, and a small dataset of inputs and
desired actions from target end-users, ACQR detects critical
high-uncertainty states and inputs for both in- and out-of-
distribution end-user behavior (Fig 1 B, high/low uncertainty
input regions in orange/gray). IQT lifts the assumption in prior
online conformal approaches, including ACQR, of constant
feedback, which would be difficult for real human users
to provide. In doing so, it enables rigorous deployment-
time uncertainty quantification based on sparse user feedback.
IQT’s statistical coverage guarantees ensure that uncertainty
is calibrated to distribution shifts in environment or human
intentions. IQT is model-agnostic, enabling UQ on both struc-
tured (e.g. Bayesian) approaches and black-box (e.g. LLM-
and diffusion-based) policies. Critically, IQT enables robots
to measure uncertainty in the predicted actions of learned

policies, allowing them to be proactive in seeking intervention.
Robots that Ask for Help during Interactive Imitation

Learning. Next, I turned my attention to how the robot can use
its uncertainty estimate to guide interaction with the user: ask-
ing for human feedback in the form of expert control. I develop
ConformalDAgger [34], a new interactive IL approach wherein
the robot uses prediction intervals calibrated by IQT as a
reliable measure of deployment-time uncertainty to actively
query for more expert feedback. ConformalDAgger uniquely
combines human-gated and robot-gated feedback: users can
anytime independently provide feedback to the robot, and
the robot can actively request human control when uncertain.
ConformalDAgger automatically increases uncertainty online
when the expert shifts, resulting in more expert label queries
compared to EnsembleDAgger [43] and allowing our approach
to rapidly learn a policy aligned with the expert’s intentions.

III. FUTURE WORK: HOW TO INTERACT FOR HELP

My current research established the algorithmic foundations
for robots to know when they don’t know, even when they use
black-box robot policies during human interaction. However,
one thing my early research studies [17] showed was that
participants still lacked an understanding of the robot’s uncer-
tainty, and the robot’s learned behaviors still often misaligned
with users’ expectation. This motivates my future work to
study how robots should communicate and interact for help:
(1) developing algorithms for proactive dialogue when the
robot is uncertain and formalizing multimodal feedback, (2)
personalizing queries to task constraints and user preferences.

Proactive Dialogue. During the interaction, the robot isn’t
limited to seeking alignment only through physical actions,
but also through interactive, in-the-moment queries to the
user during ongoing task execution [44]. I will develop an
information-theoretic formalization of different types of online
verbal and physical queries, augmenting the robot’s means for
asking for help (e.g. confirmatory queries that invite but do not
require responses: ”I’ll clear the dishes”) and explaining why
it’s uncertain. I take a first step towards proactive dialogue via
multimodal explanations of multiagent decision-making [32].

Asking User-Cognizant Queries. Second, I want to ensure
that robots pose questions that are consequential [45], [46]
with respect to the task and in ways that are preferable to or
easy to answer for the user. Users may at times require the
robot to perform learned tasks independently and at others be
available for teaching. How can the robot targetedly ask about
task-critical uncertainty through user-preferred query types?
I plan to augment the robot’s task representation to account
for user interaction objectives and evaluate via user studies the
impact of user-aware learners that ask for feedback accounting
for task consequentiality and user interaction preferences.

I ultimately want robots to view the process of learning
behaviors aligned with human objectives as collaborative,
empowering in-the-loop users to better understand the robot’s
capabilities, provide more effective, intuitive feedback, and
confidently teach robot learners to align with user objectives.
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